
Code for Thought Documentation
Release 0.1.0

Taylor "Nekroze" Lawson

July 14, 2016

Contents

1 Table of Contents 3
1.1 Chapters: . 3
1.2 Extras: . 19

i

ii

Code for Thought Documentation, Release 0.1.0

This, that I loosely call a book, is meant to guide your first steps into the world of programming and abstracting
thoughts and reality into easy to understand code.

Contents 1

Code for Thought Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Table of Contents

1.1 Chapters:

1.1.1 Introduction

While Code for Thought is designed for those who have never programmed, it is not exactly designed for the computer
illiterate. There are some assumptions made by this book that I should get out of the way before we get started.

Requirements

First and foremost we recommend and assume a POSIX based environment. This means either a Linux operating
system, like Xubuntu (which could be installed as a virtual machine using VirtualBox in any operating system) or
on windows you could install Cygwin (an easy way to get a POSIX based environment in windows for a few trade
offs). All instructions in this book are given as command line commands for a POSIX environment. There may be
equivalents for your own setup that can be found on the internet with a cursory google search.

There are many many guides on the internet on how to setup these environments, many of which explain it all better
then I could in the limited scope of this book.

Ontop of some kind of POSIX based environment you are going to need to install Python along with the packages
called Setuptools and Pip. Python will be the language we will be learning how to code in. It is a very nice to read and
concise language that is perfect for beginners learning the basic concepts of programming. Setuptools and Pip will
help us to install and distribute Python packages.

In these environments there should be some kind of text/code editor you are comfortable with using. Anything will do
and you can change your mind and use something else at any point. Personally I use Emacs which is a great editor that
has a long tradition in the programming world, although people say it has a steep learning curve. Most programmers
prefer Vim to Emacs but there are many alternatives and if it comes down to it windows notepad will work fine...
However if you want to use notepad give NotepadPlusPlus a try. It is similar to notepad but with useful programming
features.

This can all be done in pure windows obviously however programming in Linux is just much nicer. If you wish to
program in windows only (without Cygwin) you will still need a text editor and be able to use the command prompt
to run your code. There may be mention of tools that are different to use or nonexistent on windows. Most likely in
these cases there are alternatives that should not be too hard to find with a quick Google.

If you do not want to deal with the recommended environment outlined above you can follow much of this book using
the REPL website which offers a half decent python interpreter right in your browser. Much of the code examples in
this book are written in Python because it is a clear, and easy to follow, programming language that follows many of
the universal programming concepts and REPL offers a great solution without making any changes to your computer.

3

http://xubuntu.org/
https://www.virtualbox.org/
http://www.cygwin.com/
http://www.google.com
https://pypi.python.org/pypi/setuptools/0.9.8
https://pypi.python.org/pypi/setuptools/0.9.8
http://www.gnu.org/software/emacs/
http://www.vim.org/
http://www.gnu.org/software/emacs/
http://notepad-plus-plus.org/
http://www.cygwin.com/
http://www.google.com
http://repl.it/languages/Python
http://repl.it/languages/Python

Code for Thought Documentation, Release 0.1.0

The website offers a Python 2.7 interpreter and a nice clean text editor on the side that can interact with the interpreter
all inside your browser. However later chapters in this book will fall out of the scope of the REPL website.

Structure

Code for Thought will take you through learning how to write your own code from start to finish. By the end of this
you will understand the major concepts behind programming and the tools that will make your code more successful.
You will learn how to test your code and make sure it works, how to document it so that others can help contribute to
your code, and learn how to contribute to other peoples code and make the world a better place.

OK. maybe you won’t be influencing the entire world by the end of this book but today, more than ever, the world
needs people who can program. Almost everyone you know uses computers far more then they would have 15, 10,
even 5 years ago. Yet we are all just users, so few care to even think what is behind it all. Truth is that in general it is
simpler than you think. If more people can innovate and contribute to the growing world of computers then that has to
be making the world at least a little better, right?

This book will move slowly from concept to concept, focusing not just on teaching you some information about
programming but actually teaching you how to teach yourself to program.

We start with an introduction to the basic concepts of programming with interactive examples. Then we move onto
abstracting ideas into functions. Then on to data structures. With these basics we will begin to construct simple
programs you can test out and tinker with. Then we will use example programs and code to provide real life usage of
the advanced concepts you will be learning. As the projects we work with grow in size we will introduce new tools
that can greatly help with programming. These include, but are not limited to, things like; version control, unit-testing
and documentation.

At the end we will have a more free form discussion (albeit rather one sided) about programming concepts and tools
for the future.

Dedication

This book is dedicated to, Elysha. Code for Thought is designed to help her and others like her to learn code and
better understand the second love of my life.

1.1.2 Playground

Put on your sneakers kids, we are going to the playground. When the day is out we will rule the school... But less
lame sounding, I promise.

Firstly we want to fire up the Python Interpreter. You can use the default Interpreter perfectly fine and many do.
However if you want some extra features to make learning and using the Python Interpreter easier you might want to
check out bpython or install it using the following command:

$ pip install bpython

Now open a new Python Interpreter using either:

$ python

or if you chose to install bpython:

$ bpython

You will be presented with REPL environment that you can play around. If anything goes bad or you want to start
again you can close the Interpreter down using CTRL+D or executing this command on a new line in the Python
Interpreter:

4 Chapter 1. Table of Contents

http://repl.it/languages/Python
http://bpython-interpreter.org/
http://bpython-interpreter.org/

Code for Thought Documentation, Release 0.1.0

>>> exit()

Afterwards you can re-open it the same as before for a new environment.

New kid on the block

This is our stomping ground so we need to learn how to start stomping to get results!

The first piece of programming we will be learning is a simple expression. Expressions are chunks of code that do
something and return results.

There are a great many things you can do with expressions but for now lets just try some simple math in our Python
Interpreter:

>>> 1 + 2
3
>>> 1 / 2.0 * 20
10.0
>>> 1 / (2.0 * 20)
0.025

Great so we have written some simple, but boring, mathematical expressions in Python! But the last two examples
are a bit different. First, if you didn’t guess already, the symbol for multiplication in programming is the asterisk (*)
character and division is the forward slash (/) character. But the last two examples are almost exactly the same except
for the parenthesis around the 2.0 * 20 expression in the final one.

The reason for the parenthesis is to solve one of the largest problems in programming. OK well not specifically but
bare with me for a moment. One of the largest problems for new programmers, other than the syntax of the language
they have chosen, is understanding that the computer does not (and can not) think the way they do. It has no clue what
you want to do with your code. This makes it very hard for a computer to figure out what the right thing to do is, so
often it doesn’t even try.

In programming we need to make our intentions clear and preferably concise. Not only does a computer have to
understand what you mean but so do other humans. This speaks to a balance that we need to find between telling
the computer exactly what to do to get it right, and being able to actually articulate, and understand those commands
ourselves. Remember that while you may understand what you write today if you come back in six months will it still
make perfect sense?

But we are getting ahead of ourselves a bit. We use the parenthesis in the last example above because we want to divide
1 by the result of 2.0 multiplied by 20. Whereas in the second example we are dividing 1 by 2.0 and then multiplying
the result of that by 20.

Can I have a locker next to yours?

So we have some basic numbers and we can manipulate these numbers. What we need to do now is store them.
In programming we use variables to store information under a (sometimes) easy to remember name. Instead of just
saying 100 we can store that number in a variable called distance to more easily remember what the number does
and what it means. Languages have many different ways to create and interact with variables. Luckily Python is a
dynamic language (more on that in the future) and we can just give any value a name really simply:

>>> distance = 100
>>> distance
100

Now that we have stored the speed variable we can use it in calculations instead of the number and store the result.

1.1. Chapters: 5

Code for Thought Documentation, Release 0.1.0

>>> speed = distance / 20.0
>>> speed
5.0

The above is just a simple velocity calculation (I promise we will move away from maths soon) that uses the stored
distance variable we set earlier and divides it by 20.0 (the time it took for our imaginary vehicle to travel that
distance) and then stored the result in the variable called speed.

The important thing here is not the maths, it is the fact that you can store almost anything to a variable and use the
variable instead of the actual value. Now that distance is stored in a variable all we have to do is change the distance
value to something else and re-run the speed calculation and it will use the new distance! OK not that exciting yet.
But it will be.

He’s Just Not My Type

There are more things than numbers in the world of programming. And there is much more than maths. Actually only
very few programming fields are math heavy. Mostly we deal with basic data types and manipulating them to become
what we want.

Generally speaking, there are only a few basic types of data we can use and store.

Strings

A string is just text, any kind of text really. Some languages have different ways of writing these but mostly a line of
text enclosed with quotation marks denotes a string.

>>> name = "Taylor \"Nekroze\" Lawson"

The above example works perfectly well in Python to store a string of my name. But there are some important things
here. If a string is any text between two quotation marks then how do we include the same quotation mark in our text?
For this we have Escape Sequences these are characters that have a backslash (\) before them and are read as a single
letter, rather than two letters. In the case I presented we use \" to show that we don’t want to end the string but rather
to include a quotation mark inside of it.

Now in Python we have the ability to also use single quotation marks as well as the double so we could have just as
easily done the following:

>>> name = 'Taylor "Nekroze" Lawson'

And now it would work fine without using the Escape Sequence \" because the " character would not close the string
in this case. Which you use is up to you in Python however in some languages the single and double quotation mark
means different things.

For example sometimes we differentiate between a string and a character. A character is just one letter and a string is
a collection of characters. But, dynamic languages to the rescue once more, Python just takes either one and stores is
for you without complaining.

In Python we can also easily do multi line strings by using a Triple-Quoted String which can use either single or double
quotes and works on multiple lines of text.

Numbers

In programming we split numbers into different categories. Some languages have more categories than others. The
main split is between an Integer and a Floating Point Number (which is usually called a Float).

6 Chapter 1. Table of Contents

Code for Thought Documentation, Release 0.1.0

An Integer is any whole number; 1, 2, 3, 4, 5, etc. Whereas a Float is a number that has a decimal point such
as 1.1, 1.2, 1.3, 1.4, 1.5, etc.

There is a difference in these types, not just conceptually, but in the way the computer handles them. Floats are harder
for the computer to work with and take more space to store them. Also Floats are a representation of a number, they
are not always accurate but are usually accurate enough.

Some languages also make a distinction between small and large numbers. Many languages can have either an Integer
or a Long. A long is mostly the same as an integer however its maximum and minimum values are much larger than
an Integer. When it comes to Float there is a similarly larger version in many languages called Double, which just
means double the precision thus a longer decimal point.

Once again in Python we don’t have to worry about the differences all that much, If we want to use any type of number
Python will just store it and keep on working. However there is one thing worth noting when working with different
types of numbers. Because a both a Long and a Float have more information then a simple Integer can hold if we
change the types of a value around we may end up loosing some information in the process.

Booleans

Booleans are interesting. A Boolean value is either True or False, that is all they can store. Think of it like a switch
that is either on or off.

Some languages allow many different things to be considered in Boolean terms. For example in Python (and most
languages) 0 is equivalent to False and anything higher then and including 1 is the same as True. Later we will see
other ways to use many types of data as Booleans as well.

Collections

This is where it can get a bit crazy. A collection at its simplest is just a way of grouping other data types together to
store a collection of “things”.

Your basic collection is a List, which works exactly as you would expect. Just add in your data and it is all stored
together and can be manipulated as you wish. For example:

>>> shades = ['white', 'black']
>>> shades.append('grey')
>>> shades
['white', 'black', 'grey']

This is how we make a List in Python and add an element to it. Because Python is a powerful dynamic programming
language we can store any types we want in any given collection. However many other programming languages require
collections to be homogeneous, this means that all values must be the same type.

There are many other types of collections. Another very common type is the Dictionary (or Hash Table). These allow
you to make a map of one data type to another, like looking up something in a dictionary.

>>> favorite = {'color': 'black', 'language': 'Python'}
>>> favorite['color']
'black'

We have just created a dictionary, stored it in the favorite variable and then given it some simple mappings. On
the second line we look up what the dictionary holds under the string color and retrieve it.

Later on we will look at classes which are kind of like collections, in that they can hold a variety of types at once, but
with some tasty additions.

1.1. Chapters: 7

Code for Thought Documentation, Release 0.1.0

I Love it When a Plan Comes Together

Using just the types of data above and learning how to manipulate them we can make just about any piece of software
we can imagine. No, really. Pretty much every computer program ever written uses some form of the above data types
along with a series of tricks to manipulate and control them. It’s kind of beautiful if you think about it. Ever single
computer in the world; phones, laptops, airplanes, traffic lights. At some level these are all controlled by code that just
fiddles with these basic types. This is why coding is such a powerful field, everything uses it somewhere.

The goal is for you to learn how programming works, not just Python. Play around with these data types in the Python
Interpreter to get a better feel for how they work, because these things are almost entirely universal in programming.
And once you get the basic concepts behind programming itself, the language you use becomes a trivial wrapper
around your thoughts. Now that is what Code for Thought is all about!

In the next chapter we will be looking at using functions and telling the computer how to do a repetitive tasks.

1.1.3 Form and Function

Here we will be looking at functions and control flow statements that can be used to simplify common instructions
and separate usage and implementation. Important concepts for any programming project.

What is your quest?

Say we wanted to do a calculation. Say we wanted to do a calculation often. It would be useful (increasingly so with
added complexity) to separate the calculation into a function.

Functions are sets of instructions that are executed whenever the function is called by name and can optionally take in
data and even provide an output.

Imagine we had a reason to count how many times the letter “a” is in a given string and return the result. Instead of
writing the instructions required to perform this task each time it is needed we could write a function that does it for
us. For example in python we would do the following:

>>> def count_a(text):
... count = 0
... for letter in text:
... if letter == "a":
... count += 1
... return count
>>> count_a("A test sample")
1

The above code presents a host of new programming features that will be covered in this section.

Firstly we defined a function called count_a and told it to take one parameter called text. This parameter is our
input that we will count.

In programming we have the concept of code blocks, these are a section of code that belongs to some other code. Some
languages use braces such as {} to say that anything in between those symbols is a code block. However Python uses
white space indentation do denote a code block. This means that anything on the same indentation level is part of that
code block and further indentations denote nested code blocks. After defining our count_a function we need to give
it a block of code that defines what that function will do when it is called latter. Code blocks are used whenever we
need to define what a specific thing should do when it is called; the code of a function, what to do in a loop, code to
execute if a condition is met, etc.

The next line should be rather familiar by now. We are simply creating a integer variable to store the count, which
starts at zero.

8 Chapter 1. Table of Contents

Code for Thought Documentation, Release 0.1.0

Here is where things get interesting, control flow. We need to check over each letter in the text variable and see if
it is the letter we are looking for. To accomplish this we have employed a for loop. For loops are very common in
programming however some languages have different types of for loops. In python the for loop is more of a foreach
loop, unfortunately it is not named as such. Basically it takes any iterable value (more on that later but for now its
anything that can be looped over) and gives you each piece of that value until there are no more pieces left. Here we
have given the for loop the text value and told it to call each piece of it letter.

Next we introduce another new type of control flow called the if statement. An if statement evaluates a boolean
expression and then allows you to execute instructions if it is true. The boolean expression we are using here is
letter == "a". Meaning if the piece of the text parameter we are looking at currently is the same as a string
containing the letter a then the boolean expression evaluates to true. The if statement, now having an expression that
equals true then executes its code. In this case that is to add 1 to the count variable.

When adding one to the count variable we are using the in place addition operator += because we want to store the
result in the same place. we could instead use the following:

count = count + 1

this would do the calculation of whatever is stored in the count variable plus one and then store it into the count
variable. This does the exact same thing but is a little longer. However we could not just say count + 1 and thats it
because that is an expression and that expression will return the sum of count plus one but has no idea that it needs to
be stored.

After the if statement the for loop will return to the top and get the next letter from text and do it all again until
we have gotten to the end of the input.

Once all letters have been checked the count variable will now be storing the exact amount of the letter a that are
contained within the text that this function is given. But its of no use to just count the letters and then forget about it
so we need to return the results using, you guessed it, return count. By now it should be rather obvious that this
will simply return whatever is stored in the variable count back out to whatever has called this function.

Finally we see our brand new function in action by calling count_a("A test sample") return the result 1. In
our function we only checked for the letter a but we must remember that this is not the same as A as strings are case
sensitive. If we wanted to check for both lowercase and uppercase a we could change the boolean expression for the
if statement to a little to the following:

letter == "a" or letter == "A"

Then the if statement has two boolean expressions that make up the larger boolean expression. Firstly it checks for the
lowercase a then if that is false it will continue to the uppercase A check and if that is also false then the entire boolean
expression will be false and not execute the if statements instructions. In python you can also use the and keyword if
both of these boolean expressions needed to be true in order to proceed. In this case however the and keyword would
do no good because a letter cannot be lowercase and uppercase at the same time so we use or.

Go with the flow man

In programming we often use control flow statements to alter the way our code performs.

If your happy and you know it

For example if we want code to do one thing or another depending on a variable we use an if statement.

The if statement evaluates a boolean expression and executes the body of the if statement if that boolean is positive.
If however it is negative the code can either; look for an else if and evaluate that expression next, look for an else
statement and do that instead of any condition, or finally continue normal execution of the code.

In python we can give the following example that takes in a message code and then prints the corresponding message:

1.1. Chapters: 9

Code for Thought Documentation, Release 0.1.0

>>> def message(code):
... if code == 1:
... print("Hello world!")
... elif code == 2:
... print("Goodbye cruel world!")
... else:
... print("I don't even know what to say...")
... return True
>>> message(1)
Hello world!
True
>>> message(2)
Goodbye cruel world!
True
>>> message(3)
I don't even know what to say...
True

Each part of an if statement is executed one after another until a positive boolean expression is found. An else block
is optional as is an else if (called elif in python) however if an else is used it must be last in the chain as it
acts as a sort of “catch all” in that if none of the if statements are executed then the else surely will be.

Do a barrel roll!

Doing something over and over again until a particular time is done using loops which are most commonly; for,
foreach, and while. In some cases only one of the first two loops are available. In python there is a loop that is
started using the keyword for however it behaves like a foreach loop.

There are some minor but important differences between each loop type.

For Usually takes 3 statements; variable to count with, how to increment the variable, and the condition in which to
stop the for loop. In c/c++ a for loop would look something like this:

for (int count; count >= 10; count++){
dosomething();

}

This would, in order:

• create an integer variable called count.

• ensure the loop will stop when the number stored in count is greater then or equal to the number 10

• instruct the for loop to increase the number stored in count by 1 each loop.

• call the function dosomething with no arguments.

The body of the loop is the function call dosomething();. The body of a loop gets called until its end condition
is met and the loop as played itself out. Alternatively the body of a loop can tell the loop itself to break and thus the
loop will stop and return to executing the code outside of the loop.

Foreach A foreach loop typically wakes two statements. A iterable object and a name to use for each element from
that object.

Firstly, an iterable is anything that has multiple elements to be retrieved or iterated over. A list of names is iterable
making a for loop the best way to perform some action that uses each name on the list.

10 Chapter 1. Table of Contents

Code for Thought Documentation, Release 0.1.0

The following python code (python uses the for keyword even though it is really behaves like a foreach) will
iterate over a list of friends names and then call the print function with the current name until all names have been
iterated over.

>>> friends = ["nekroze", "lyshkah"]
>>> for name in friends:
... print(name)
nekroze
lyshkah

The foreach loop is a little bit of a newer concept then the for loop. Many programmers would use a for loop that
had an end condition be the length of a list and just use the counter as an index to the list. This was doing essentially the
same thing as the foreach loop does but is much more complicated. Python gets away with having only a foreach
loop (using the for keyword however) because you can still get the original for loop functionality by generating an
iterable range for example, but many languages have both.

While The while loop takes only a condition and will keep looping until that condition is met. A while loop is
much like a for except it is up to the programmer to create the counter variable and implement how it is increased.

>>> loops = 0
>>> while loops < 10:
... loops += 1
>>> loops
10

An important thing to note, especially with while loops, is that the condition can be any expression that can equate
to a boolean. This can even be a function so long as it returns something that can be considered a boolean.

1.1.4 The Object of my Desire

Now we have data that we can store and functions to easily and repeatable manipulate that data but sometimes it is not
enough. Many programming languages use a paradigm called Object Oriented Programming (commonly referred to
as OOP) that allows us to do many cool and complex things in a relatively elegant way.

The primary feature of OOP is... you guessed it, Objects. An object is a named collection of variables that is used as
a template to create a data structure that performs as specified on demand.

This may sound quite complicated but it just needs to be explained better. Objects are a great way of conceptualizing
real world objects in programming. Say we wanted to create a representation of a cube in our code. We could use
collection data types like a dictionary or some such to store the data about our cube. What would be even better,
however, is to create an object that defines how a cube should act and what kind of data it would store.

The first thing that needs to be done is to think about what kind of data we want to store. For a cube it should have at
least a size variable to store, well, its size. Because we are defining a cube and each side should have the exact same
length we can use one size variable for all of the sides. This is a fine representation of a cube, albeit very simplistic.
Lets also decide we want to store its position in a three dimensional space. For this we simply need to store an; X, Y
and Z variable to describe its position.

Now enough theory lets have a look at this object in some real code, namely Python.

>>> class Cube(object):
... def __init__(self):
... self.size = 0
... self.posx = 0
... self.posy = 0
... self.posz = 0
>>> companion = Cube()

1.1. Chapters: 11

Code for Thought Documentation, Release 0.1.0

>>> companion.size = 10
>>> companion.size
10

OK, some basic things to get out of the way. In Python objects should inherit from the base object, this is why after
we name our new “class” (the common name for an object definition) we place (object) to denote that this class
acts like an object.

Objects often have “constructors” and sometimes “destructors” these are functions (or “methods” as they are called
when they are part of an object’s definition) that are called when, you guessed it again, the object is constructed and/or
destroyed.

Also often when defining classes/objects and their methods we use the terms self or this to mean this instance of
an object.

In the above example we use the Python object constructor __init__ that takes an object instance as an argument
(self) and will give its variables their default values, in this case the integer 0.

Next we assign the variable companion as a new instance of the Cube object by calling the object as if it where a
function. Finally we set the size variable of our new Cube object to 10 and finally we show that the change worked.

Now we can create any number of Cube objects each with their own values by creating a new instance just as we did
above with companion.

Other languages employ different methods and keywords for using and creating objects, classes, instances, etc. and is
usually very easy to find on the web.

The Layer Cake

Another very useful feature of OOP is Inheritance. What this means is that one object definition can be based on
another, taking all its variables and methods and building on top of them.

Lets just go straight to an example this time.

>>> class InSpace(object):
... def __init__(self, posx=0, posy=0, posz=0):
... self.posx = posx
... self.posy = posy
... self.posz = posz
>>> class Cube(InSpace):
... def __init__(self, size, posx=0, posy=0, posz=0):
... super(Cube, self).__init__(posx, posy, posz)
... self.size = size
>>> destination = InSpace(1,posz=5)
>>> destination.posx
1
>>> destination.posy
0
>>> companion = Cube(10)
>>> companion.posx
0

This time we are doing things a little different.

We start off with similar thing to before, we are just creating a new class to define things that exist in a three dimen-
sional space. However here we are using default arguments to allow the constructor to optionally take the position of
an InSpace object only if it is given, otherwise that dimension will be 0.

Next we define a new Cube object, this time instead of inheriting directly from object we inherit from InSpace. This
means that our new object will have everything that InSpace has and can be used anywhere an InSpace object is

12 Chapter 1. Table of Contents

Code for Thought Documentation, Release 0.1.0

expected. For this objects constructor we tell it that we want the size argument to be required and have the position
arguments to default to 0 upon creation/initialization of this object.

In some languages, Python included, you will need to explicitly call the constructor of the “parent” object if you want
it to be executed. Python uses the super function to make this a bit easier in Python 3 it is even easier as super
can be called with no arguments to do exactly the same thing as above, but people are still using both so I show what
works everywhere.

This is more language specific rather then general programming and so is not something I will go into too deeply.
Suffice to say that above we use super to get the object definition of the parent of Cube and then call its constructor
appropriately.

After we have defined our object hierarchy I have just done some example usages of both classes including different
ways to use the optional positional arguments.

The Method to my Madness

Now we can go about doing cooler things like giving special methods that only cubes can use or even better adding
methods to InSpace that allows every object definition that inherits it to easily move around without having to update
its “children” such as Cube. In fact lets do just that!

Using the above example, again, any changes in the code to the InSpace class will be reflected in any class that inherits
from it (it’s children) accordingly. Because of this we can easily abstract the concepts behind a class in its base
components. So if everything exists in a three dimensional space it might be a good idea to implement things specific
to being in such a space in a class such as InSpace so each object that derives from it does not have to implement such
things over and over again. This leaves each object inheriting from InSpace to focus on what it specifically needs to
accomplish it’s job.

With this in mind let us redefine the InSpace class with some methods to help us move around in a space.

class InSpace(object):
def __init__(self, posx=0, posy=0, posz=0):

self.posx = posx
self.posy = posy
self.posz = posz

def move_x(self, distance):
self.posx += distance

def move_y(self, distance):
self.posy += distance

def move_z(self, distance):
self.posz += distance

With this as our new base class we can use the move_ methods from any object that inherits from InSpace.

This means that we can use the Cube class as it was defined above and do companion.move_x(10) to move 10
units forward in space and companion.move_x(-10) to move 10 units backwards. Note that in the function call
to move backwards we use -10 for a specific reason.

We could have a method for moving forwards and backwards on each axis but that may get a little messy. Instead we
use a more general approach. When we add the distance to a variable we use the += operator which adds distance
to the current value of the variable on the left and then stores the result in the same place. Basically the final two
statements are identical.

>>> position = 0
>>> position = position + 10
>>> position += 10

1.1. Chapters: 13

Code for Thought Documentation, Release 0.1.0

Now comes the part that we abuse to make the movement three simple methods instead of six. When you add a
negative number (-10 in our case) to another number it will actually perform a minus operation. By using this we
can just hand the move methods positive numbers when we want to move forward on that axis and a negative integer
when we want to move backwards. Neat huh!

This Isn’t Even my Final Form

It doesn’t end here. Depending on you needs and what you language of choice provides you can create powerful
base classes and object hierarchies or even interfaces that you can use to make your code easily re-usable and even
extendable.

Some languages allow a class to inherit from multiple classes at once. In statically typed languages there is often
Templating which allows for you to make a generic class that can be used with any object type. There are very few
problems that cannot be solved using an OOP approach.

It sounds complex but this can be super helpful. However just the basics outlined here is more then enough to get you
into the world of OOP and open up a lot of possibilities for better code.

1.1.5 Tasty Source

When all is said and done writing code in a clean, readable, and reusable way is pointless unless the code can be saved
for later use. In programming a source file (sometimes called a module) is a text file that contains our code. Separating
code into smaller modular files that refer to code in one another module makes our code easier to read and edit because
we can keep each concept stored in a single file. We do not have to, nor should we, keep all of our source code in the
same file. This also makes redistributing or sharing the code very easy.

If you have not noticed, much of the goal in programming is to break down your thoughts into smaller concepts and
then make them into even smaller pieces of code. If you have one massive function that does everything your program
needs to do then it can often be hard to find and solve problems in this code. However, if you break your code into
smaller pieces (wherever it makes sense to do so) then you are left with small, replaceable, and reusable pieces of the
puzzle.

Also probably evident, in programming we want to create beautiful code while also being super lazy. This means that
we tend to favor clean, small code that when read is clear about what it does. This is made even easier when the source
code is not a big jumbled mess.

Pass the Source

Obviously if we split our code into different files we will need a method of telling one file that it uses something in
another file. Today this is usually called “importing” (sometimes called include) and is often written at the top of a
source file. Importing is used not just to reference your own code in other files but other code that is included in your
programming language of choice, or even a library that someone else wrote that you wish to use.

In Python we can write the following code which will calculate 2 to the power of 10 using the math module that
comes with Python.

>>> import math
>>> math.pow(2, 10)
1024.0

By using the import keyword we have told the language (Python in this case) that it should look for a module named
math so that we can use the code defined in math.

When you ask to import something the language will go looking in some predefined locations that it thinks the source
code is likely to be. Usually it will first look in the current directory that you or your root source file is located in.
Then it might search other locations that it thinks its libraries will be installed to. This means that even though Python

14 Chapter 1. Table of Contents

Code for Thought Documentation, Release 0.1.0

comes with a math module, if I wrote another Python file in the same directory that I started the python command
line interpreter then that file would be imported instead. This is because it looks there before looking in the libraries
included by Python.

Most languages work in a very similar way. Some languages have Imports (or includes) that work slightly differently
or can be made more specific. In C/C++ when another file is included then everything in that file is brought into the
current file as if it where written here. Meaning if there is a function called pow in the file we are including and we
also have one in the source file after the include then it will override the previous pow.

A similar thing can be done in Python but it is not recommended for exactly the reason I mentioned above. It pollutes
your source code by importing everything into the current Namespace.

>>> from math import *
>>> pow(2, 10)
1024.0

While this is generally considered a bad thing to do in many modern programming circles it does present something
nice. We do not have to prefix any math usage with its Namespace, we just call the pow function directly. This may
sound like a trade off that needs to be considered but many languages have already beaten you to a beautiful solution,
selective imports!.

If all we are going to do is use the pow function, and it is not going to cause any confusion or conflicts with other code
in our own module, why not just import pow and nothing else. Seems logical, lets do that.

>>> from math import pow
>>> pow(2, 10)
1024.0

There we have it. We are now importing only what we use. There are arguments for both this method and just
importing only the math module, Namespace and all, however they are a little beyond this book. No one here is
trying to tell you how anything has to be done. But, I do encourage you to experiment and decide what is best for your
self.

As a final note on importing things in cool ways. What if we do only want to import a specific function, or even
then whole module, but we already have something that has the same name in our current module that would cause
conflicts. A few languages will allow you to rename what you import, Python included.

>>> from math import pow as mathpow
>>> mathpow(2, 10)
1024.0
>>> import math as realmath
>>> realmath.pow(2, 10)
1024.0

Using these two methods we can usually dance around any import conflicts and land on some beautiful code.

Although when importing modules do be careful about “Circular Dependencies”. If module A imports module B
which imports module A, this can be a real problem and some languages will just fail to handle this at all if you are
lucky. If you are unlucky they may get stuck in a loop or not give you any hint as to why it is failing.

Fair Shake of the Source

Some languages do not have an interactive interpreter and must be used by compiling/interpreting source files. In
Python we can do both.

Source files are plain text files that use a specific file extension (the last few letters of a file name after a dot, ie.
filename.txt the extension is .txt) that can be edited using anything that can write a simple text file although
some editors have better support for programming.

1.1. Chapters: 15

Code for Thought Documentation, Release 0.1.0

We could start an entire war over which editor is the best to use, we covered some of the common choices in the
Introduction and left it to you to research and decide what you like the best. Experiment away, that’s what we are here
to do.

Another important thing about source files is that they usually have some kind of entry point. An entry point is usually
a function called main that is the start of our programs execution.

Python is a little different but every language has its twists. We are going to write a simple program that will just say
Hello World! to the user. This is a pretty program that is very often used as a first tutorial or introduction to a
specific programming language.

Source files for Python are denoted by the .py file extension. So here is greeting.py

def greeter():
print("Hello World!")

if __name__ == "__main__":
greeter()

Now if we run python greeting.py from the command line we will get our greeting. Finally we touched on
something where Python may not be the easiest language to demonstrate with. I will give a little explanation.

In most languages there is just some kind of main function or equivalent entry point. Due to the nature of Python we
need to jump through a few hoops to do the same thing.

We could get the same results if we wrote the file like this.

def greeter():
print("Hello World!")

greeter()

Or, for those of you who are a little sharper, you may have noticed we can just make this a one line file and do the
same thing still.

print("Hello World!")

However we do not do this when we are writing a program. As a single file script this works just fine but what if some
other source files in our program wanted to use greeting.py. Give it a go and see what happens. If we change
the greeting.py source code to either of the previous two examples and then open a new Python interpreter with
python on the command line in the same directory as the greeting.py source file.

If we entered import greeting it would print out Hello World! which in the second examples case means
that just by importing the module the greeter function was called. However the first example will only call the
function when that source is the file being executed by python directly as we did by calling python greeting.py
making the greeting module have the special __name__ variable equal "__main__".

In this case it does not really matter if you understand why this happens just that you know that with python that is
how it is done.

If you are still having problems figuring out when to use which method just take a moment to experiment. After all
experimenting is the best way to learn programming (in my opinion) and is a core concept of this book.

Packages

After all this we now have a greeting module but what if we want to step up the complexity. This is where packages
come in. When there are lots of source files it can be easier to sort things into a hierarchy of directories. For example
in a game we might want to have a package for everything to do with drawing to the screen and a different package
for all the networking code. So what we can do is have a directory structure that looks like this:

16 Chapter 1. Table of Contents

Code for Thought Documentation, Release 0.1.0

./

./game.py

./graphics/

./graphics/screen.py

./network/

./network/client.py

With this directory structure graphics and network are packages that contain the screen and client modules
(respectively) and as such we can use these modules by saying from graphics import screen or with Python
and some other languages we can even get something specific from our modules:

from graphics.screen import draw

It is worth noting that the example file structure given above will not work in Python because it wont just accept
any directory as a package. In Python a directory that should be considered a package must have a file in it called
__init__.py that can be empty. This file is what is executed when you import just the package, for example
import graphics would run any code in __init__.py before continuing. This is specific to python but the
general package concept holds true even for languages that don’t support modern “packages”. For example in C/C++
instead of giving the package/module names you give the file path:

#include "graphics/screen.h"

Using packages can make code maintenance much easier and the entire project easier to understand.

1.1.6 RTFM!

This is where we go from programming something that works to something that is good and useful. In the program-
ming world the difference between the scrawlings of a mad man and the poetry of a genius is documentation. Even
if you are the only person who uses the code you are writing and it is not to be distributed publicly, documentation is
one of the most powerful tools a programmer has at their disposal.

If you look around programming forums and discussions enough you will find people talking about old code that they
found from years ago that has no documentation and they have no idea what it does. At the time they wrote the code
they could figure out what it did by looking at it but nowadays it makes little or no sense. Documentation can help us
just as much as it can help others.

When starting a new programming project often you will come across a library that seems like it would be useful but
then you try and find out how to use it but there is little or no documentation. At this point the only option to figure
it out is to read the code and learn it like that. Some people enjoy this but others do not, especially if you are doing
a large project that uses many different libraries. If the documentation is lacking then it doesn’t matter how brilliant,
fast, clean or effective the code is.

Having documentation is a great way to get people interested in how it works and a very handy way of reminding
yourself of the direction you are going. Documentation often helps make your code more maintainable and even
makes the code itself more readable, as often documentation is included in the source code itself. Writing or enhancing
documentation is also a great way to learn how someone elses project works. It is also a good introduction on how to
contribute to open source projects.

Documentation generally comes in two forms; comments and docs. Comments are pieces of text that are inside the
source code itself and is only viewed by people looking at that code. Docs are sometimes, but not always, also
included in the source code and are turned into readable documentation for the public. This can be done in multiple
ways, nowadays the most common way is to generate a website out of the docs and publicly publish that website...
much the same way this book is written. Actually that’s exactly how this book is written.

1.1. Chapters: 17

Code for Thought Documentation, Release 0.1.0

This Title Explains the Content of This Sub-Chapter

Not all programming languages agree on a common method of denoting a comment but usually it is just a special
character and then the rest of the line is ignored by the programming language. This means anything after that special
character can only be seen by viewing the source code, sounds like the perfect place to explain things.

Programmers are lazy folk, we do not want to remember everything about our code and usually we can’t. So what we
often do is use a comment to describe what some code does, especially when it isn’t readily apparent what the code
really does.

Lets write some comments for our old 3d space example.

class InSpace(object):

def __init__(self, posx=0, posy=0, posz=0):
self.posx = posx
self.posy = posy
self.posz = posz

def move_x(self, distance):
self.posx += distance #Add distance to position x

def move_y(self, distance):
self.posy += distance #Add distance to position y

def move_z(self, distance):
self.posz += distance #Add distance to position z

class Cube(InSpace):

def __init__(self, size, posx=0, posy=0, posz=0):
#Call the parent constructor.
super(Cube, self).__init__(posx, posy, posz)
self.size = size

Our code functions the same but we have now added some comments to explain what is going on in some of the less
obvious areas. In Python comments are started with the pound (#) character. Some languages us a double forward
slash (//) for single line comments and forward slash asterisk (/*) to denote the start of a multi-line comment and
the opposite to end that comment (*/). While pound only does single line comments in Python that does not mean
that we are missing out. There is wisdom in the way Python does things, instead of providing multi-line comments it
provides what it calls “doc strings” which are actually multi-line comments however they are also documentation that
can be accessed by the user of your code and they look like strings. That’s probably why they are called “doc strings”.

Unlike Humans, Chuck Norris Doesn’t Need Documentation

When learning how to use a piece of software one of the most useful things that it can provide is clear, up to date,
documentation. Lets go straight to writing some documentation.

In Python we can use a “doc string” to document a piece of code like a class, a function, or a method.

Lets add some documentation to our 3d space code.

class InSpace(object):
"""
Describes an object in a 3d environment.
"""
def __init__(self, posx=0, posy=0, posz=0):

self.posx = posx

18 Chapter 1. Table of Contents

Code for Thought Documentation, Release 0.1.0

self.posy = posy
self.posz = posz

def move_x(self, distance):
"""Move on the X axis."""
self.posx += distance #Add distance to position x

def move_y(self, distance):
"""Move on the Y axis."""
self.posy += distance #Add distance to position y

def move_z(self, distance):
"""Move on the Z axis."""
self.posz += distance #Add distance to position z

class Cube(InSpace):
"""
A Cube in 3d space.

Stores a single size variable for the size of all edges.
"""
def __init__(self, size, posx=0, posy=0, posz=0):

#Call the parent constructor.
super(Cube, self).__init__(posx, posy, posz)
self.size = size

Python has a handy help function that can output doc strings for anything that is given to it. This is the basis of
documentation in Python and can be used in more complex ways in the future. For example, tools can be used that get
all of the doc strings in your code and turn them into a website, or file, that can be shared with the world.

For now give this example a go. Put the new documented 3d space classes into a file and try using the help function
to view the documentation.

1.2 Extras:

1.2.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You too can contribute to this book. As a matter of fact almost the entire proccess is covered in Code for Thought
itself.

The whole book is a relatively simple to use github repository at https://github.com/Nekroze/codeforthought where it
can easily be forked, modified and “pull requested”.

If you see a problem with this book; I said something ineloquently (probably many things), Something was hard to
understand or something just doesn’t work properly (it can happen! dont look at me like that).

You can contribute in many ways:

Types of Contributions

Report Bugs

Is something not working the way the book says it does?

1.2. Extras: 19

https://github.com/Nekroze/codeforthought

Code for Thought Documentation, Release 0.1.0

Report bugs at https://github.com/Nekroze/codeforthought/issues.

If you are reporting a bug, please include:

• The [bug] tag in the issue.

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

Write Documentation

We can always explain something badly or word something poorly, this paragraph is no exception. Anyone is welcome
to help make Code for Thought more readable and understanable for everyone.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Nekroze/codeforthought/issues.

If you are proposing a feature:

• Include the [feature] tag in the issue.

• Explain in detail how it would work and why this it is better for everyone.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up codeforthought for local development.

1. Fork the codeforthought repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/codeforthought.git

3. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

20 Chapter 1. Table of Contents

https://github.com/Nekroze/codeforthought/issues
https://github.com/Nekroze/codeforthought/issues

Code for Thought Documentation, Release 0.1.0

4. When you’re done making changes, check that your changes pass all the tests. You can use either the following
command to do all tests at once:

$ make test

Or seperately:

(a) Test web links:

$ make linkcheck

(b) Test doctests and code examples:

$ make doctest

(c) Test html building:

$ make html

5. Commit your changes and push your branch to GitHub:

$ git add --all .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

1.2.2 Glossary

POSIX an acronym for “Portable Operating System Interface”, is a family of standards specified by the IEEE for
maintaining compatibility between operating systems. POSIX defines the application programming interface
(API), along with command line shells and utility interfaces, for software compatibility with variants of Unix
and other operating systems.

Python A widely used general-purpose, high-level programming language. Its design philosophy emphasizes code
readability, and its syntax allows programmers to express concepts in fewer lines of code than would be possible
many other common languages. The language provides constructs intended to enable clear programs on both a
small and large scale

For more information head over to http://www.python.org/ and once installed python can be run from the com-
mand line as such:

$ python

Or for executing a python file called, for example, mycode.py:

$ python mycode.py

Pip A tool for installing and managing Python packages. Simply allows you to install and manage any Python
packages that are available at https://pypi.python.org/ using the following syntax on the command line:

$ pip install six

The above command will automatically download and install the package called six. On some systems you
may need to insert the sudo command to the begging of the pip command in order to have permissions to install
the package.

Interpreter A computer program that executes, i.e. performs, instructions written in a programming language.
An interpreter generally uses one of the following strategies for program execution: 1. parse the source code
and perform its behavior directly 2. translate source code into some efficient intermediate representation and

1.2. Extras: 21

http://www.python.org/
https://pypi.python.org/

Code for Thought Documentation, Release 0.1.0

immediately execute this 3. explicitly execute stored precompiled code made by a compiler which is part of the
interpreter system

While generally these are used on text files containing source code many interpreters feature a REPL.

REPL A read–eval–print loop (REPL) is a simple, interactive computer programming environment. The user enters
one or more expressions (rather than an entire compilation unit), which are then evaluated, and the results
displayed. These provide a simple and easy way to learn a language and experiment with Snippets.

Snippets A programming term for a small region of re-usable source code, machine code, or text. Ordinarily, these
are formally-defined operative units to incorporate into larger programming modules. Snippets are often used to
clarify the meaning of an otherwise “cluttered” function, or to minimize the use of repeated code that is common
to other functions. The Snippets themselves may be either literal text, or written in a simple template language
to allow substitutions, such as variable names. Snippets are a small-scale form of copy and paste programming.

OOP Object-oriented programming is a programming paradigm that represents concepts as “objects” that have data
fields (attributes that describe the object) and associated procedures known as methods. Objects, which are
usually instances of classes, are used to interact with one another to design applications and computer programs.

Templating A programming feature (present in some statically typed languages) that allows generic code to be
written that is designed to work with many data types. When a template is instantiated with a type then that
type will take the role of a generic variable within the template code as if it where written to use that type.
In languages that draw a distinction between the types, for example, of an array of strings versus an array of
numbers, Templating can be used to write one function that can act on both

Namespace In computer programming, namespaces are typically employed for the purpose of grouping symbols and
identifiers around a particular functionality.

C/C++ In computing, C is a general-purpose programming language initially developed by Dennis Ritchie between
1969 and 1973 at AT&T Bell Labs. C++, developed by Bjarne Stroustrup starting in 1979 at Bell Labs, was
originally named C with Classes, adding object oriented features, such as classes, and other enhancements to
the C programming language.

22 Chapter 1. Table of Contents

Index

C
C/C++, 22

I
Interpreter, 21

N
Namespace, 22

O
OOP, 22

P
Pip, 21
POSIX, 21
Python, 21

R
REPL, 22

S
Snippets, 22

T
Templating, 22

23

	Table of Contents
	Chapters:
	Extras:

